Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(8): 3884-3893, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375801

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most valuable herbicide targets due to its unique biological functions. In search of HPPD inhibitors with promising biological performance, we designed and synthesized a series of novel tetrazolamide-benzimidazol-2-ones using a structure-based drug design strategy. Among the synthesized compounds, 1-(2-chlorobenzyl)-3-methyl-N-(1-methyl-1H-tetrazol-5-yl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-4-carboxamide, 25, IC50 = 10 nM, was identified to be the most outstanding HPPD inhibitor, which showed more than 36-fold increased Arabidopsis thaliana HPPD (AtHPPD) inhibition potency than mesotrione (IC50 = 363 nM). Our AtHPPD-25 complex indicated that one nitrogen atom on the tetrazole ring and the oxygen atom on the amide group formed a classical bidentate chelation interaction with the metal ion, the benzimidazol-2-one ring created a tight π-π stacking interaction with Phe381 and Phe424, and some hydrophobic interactions were also found between the ortho-Cl-benzyl group and surrounding residues. Compound 32 showed more than 80% inhibition against all four tested weeds at 150 g ai/ha by the postemergence application. Our results indicated that the tetrazolamide-benzimidazol-2-one scaffold may be a new lead structure for herbicide discovery.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Arabidopsis , Benzimidazóis , Herbicidas , Estrutura Molecular , Relação Estrutura-Atividade , 4-Hidroxifenilpiruvato Dioxigenase/química , Herbicidas/farmacologia , Herbicidas/química , Arabidopsis/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
2.
J Agric Food Chem ; 71(39): 14221-14231, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37729497

RESUMO

Protoporphyrinogen IX oxidase (PPO/Protox, E.C. 1.3.3.4) is recognized as one of the most important targets for herbicide discovery. In this study, we report our ongoing research efforts toward the discovery of novel PPO inhibitors. Specifically, we identified a highly potent new compound series containing a pyrimidinedione moiety and bearing a versatile building block-benzoxazinone scaffold. Systematic bioassays resulted in the discovery of compound 7af, ethyl 4-(7-fluoro-6-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-3-oxo-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)butanoate, which exhibited broad-spectrum and excellent herbicidal activity at the dosage of 37.5 g a.i./ha through postemergence application. The inhibition constant (Ki) value of 7af to Nicotiana tabacum PPO (NtPPO) was 14 nM, while to human PPO (hPPO), it was 44.8 µM, indicating a selective factor of 3200, making it the most selective PPO inhibitor to date. Moreover, molecular simulations further demonstrated the selectivity and the binding mechanism of 7af to NtPPO and hPPO. This study not only identifies a candidate that showed excellent in vivo bioactivity and high safety toward humans but also provides a paradigm for discovering PPO inhibitors with improved performance through molecular simulation and structure-guided optimization.


Assuntos
Benzoxazinas , Herbicidas , Humanos , Benzoxazinas/farmacologia , Benzoxazinas/química , Protoporfirinogênio Oxidase , Inibidores Enzimáticos/química , Herbicidas/química , Nicotiana/metabolismo
3.
J Agric Food Chem ; 71(14): 5783-5795, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36977356

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most promising herbicide targets for the development of agricultural chemicals owing to its unique mechanism of action in plants. We previously reported on the co-crystal structure of Arabidopsis thaliana (At) HPPD complexed with methylbenquitrione (MBQ), an inhibitor of HPPD that we previously discovered. Based on this crystal structure, and in an attempt to discover even more effective HPPD-inhibiting herbicides, we designed a family of triketone-quinazoline-2,4-dione derivatives featuring a phenylalkyl group through increasing the interaction between the substituent at the R1 position and the amino acid residues at the active site entrance of AtHPPD. Among the derivatives, 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(1-phenylethyl)quinazoline-2,4(1H,3H)-dione (23) was identified as a promising compound. The co-crystal structure of compound 23 with AtHPPD revealed that hydrophobic interactions with Phe392 and Met335, and effective blocking of the conformational deflection of Gln293, as compared with that of the lead compound MBQ, afforded a molecular basis for structural modification. 3-(1-(3-Fluorophenyl)ethyl)-6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethylquinazoline-2,4(1H,3H)-dione (31) was confirmed to be the best subnanomolar-range AtHPPD inhibitor (IC50 = 39 nM), making it approximately seven times more potent than MBQ. In addition, the greenhouse experiment showed favorable herbicidal potency for compound 23 with a broad spectrum and acceptable crop selectivity against cotton at the dosage of 30-120 g ai/ha. Thus, compound 23 possessed a promising prospect as a novel HPPD-inhibiting herbicide candidate for cotton fields.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Arabidopsis , Herbicidas , Herbicidas/química , Estrutura Molecular , Relação Estrutura-Atividade , 4-Hidroxifenilpiruvato Dioxigenase/química , Arabidopsis/metabolismo , Gossypium/metabolismo , Quinazolinas/química
4.
Trends Biochem Sci ; 48(6): 539-552, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36841635

RESUMO

Protein-protein interactions (PPIs) have important roles in various cellular processes, but are commonly described as 'undruggable' therapeutic targets due to their large, flat, featureless interfaces. Fragment-based drug discovery (FBDD) has achieved great success in modulating PPIs, with more than ten compounds in clinical trials. Here, we highlight the progress of FBDD in modulating PPIs for therapeutic development. Targeting hot spots that have essential roles in both fragment binding and PPIs provides a shortcut for the development of PPI modulators via FBDD. We highlight successful cases of cracking the 'undruggable' problems of PPIs using fragment-based approaches. We also introduce new technologies and future trends. Thus, we hope that this review will provide useful guidance for drug discovery targeting PPIs.


Assuntos
Descoberta de Drogas , Ligação Proteica
5.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457196

RESUMO

Rigorous risk assessment of chemicals in food and feed is essential to address the growing worldwide concerns about food safety. High-quality toxicological data on food-relevant chemicals are fundamental for risk modeling and assessment in the food safety area. The organization and analysis of substantial toxicity information can positively support decision-making by providing insight into toxicity trends. However, it remains challenging to systematically obtain fragmented toxicity data, and related toxicological resources are required to meet the current demands. In this study, we collected 221,439 experimental toxicity records for 5,657 food-relevant chemicals identified from extensive databases and literature, along with their information on chemical identification, physicochemical properties, environmental fates, and biological targets. Based on the aggregated data, a freely available web-based databank, Food-Relevant Available Chemicals Toxicology Databank (FRAC-TD) is presented, which supports multiple browsing ways and search criterions. Applying FRAC-TD for data-driven analysis, we revealed the underlying toxicity profiles of food-relevant chemicals in humans, mammals, and other species in the food chain. Expectantly, FRAC-TD could positively facilitate toxicological studies, toxicity prediction, and risk assessments in the food industry.

6.
J Agric Food Chem ; 70(22): 6617-6623, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35617526

RESUMO

Pesticides are widely used agrochemicals for crop protection. The need for novel pesticides becomes urgent as a result of the emergence of resistance and environmental toxicity. Pesticide informatics has been applied in different phase processes of pesticide target identification, active ingredient design, and impact evaluation. However, these valuable resources are scattered over the literature and web, limiting their availability. Here, we summarize and connect research on pesticide informatics resources. A pesticide informatics platform (PIP) was constructed to share these tools. We finally discuss the future direction of pesticide informatics, including pesticide contamination. We expect to share the pesticide informatics approaches and stimulate further research.


Assuntos
Resíduos de Praguicidas , Praguicidas , Agroquímicos/análise , Proteção de Cultivos , Informática , Resíduos de Praguicidas/análise , Praguicidas/química
7.
J Agric Food Chem ; 70(22): 6644-6657, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618678

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a functional protein existing in almost all aerobic organisms. In the field of agricultural chemicals, HPPD is acknowledged to be one of the crucial targets for herbicides at present due to its unique bio-function in plants. In the Auto Core Fragment in silico Screening (ACFIS) web server, a potential HPPD inhibitor featuring 1,2,3-benzotriazine-4-one was screened out via a pharmacophore-linked fragment virtual screening (PFVS) method. Molecular simulation studies drove the process of "hit-to-lead" optimization, and a family of 1,2,3-benzotriazine-4-one derivatives was synthesized. Consequently, 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-5-methyl-3-(2-methylbenzyl)benzo[d][1,2,3]triazin-4(3H)-one (15bu) was identified to be the best HPPD inhibitor (IC50 = 36 nM) among the 1,2,3-benzotriazine-4-one derivatives, which had over 8-fold improvement of enzyme inhibition compared with the positive control mesotrione (IC50 = 289 nM). Crystallography information for the AtHPPD-15bu complex revealed several important interactions of the ligand bound upon the target protein, i.e., the bidentate chelating interaction of the triketone motif with the metal ion of AtHPPD, a tight π-π stacking interaction consisting of the1,2,3-benzotriazine-4-one moiety and two benzene rings of Phe-424 and Phe-381, and the polydirectional hydrophobic contacts consisting of the ortho-CH3-benzyl group of the core scaffold and some hydrophobic residues. Furthermore, compound 15bu displayed 100% inhibition against the five species of target weeds at the tested dosage, which was comparable to the weed control of mesotrione. Collectively, the fused 1,2,3-benzotriazine-4-one-triketone hybrid is a promising chemical tool for the development of more potent HPPD inhibitors and provides a valuable lead compound 15bu for herbicide innovation.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Relação Estrutura-Atividade , Triazinas , Controle de Plantas Daninhas
8.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34643234

RESUMO

Protein post-translational modifications (PTM) play vital roles in cellular regulation, modulating functions by driving changes in protein structure and dynamics. Exploring comprehensively the influence of PTM on conformational dynamics can facilitate the understanding of the related biological function and molecular mechanism. Currently, a series of excellent computation tools have been designed to analyze the time-dependent structural properties of proteins. However, the protocol aimed to explore conformational dynamics of post-translational modified protein is still a blank. To fill this gap, we present PTMdyna to visually predict the conformational dynamics differences between unmodified and modified proteins, thus indicating the influence of specific PTM. PTMdyna exhibits an AUC of 0.884 tested on 220 protein-protein complex structures. The case of heterochromatin protein 1α complexed with lysine 9-methylated histone H3, which is critical for genomic stability and cell differentiation, was used to demonstrate its applicability. PTMdyna provides a reliable platform to predict the influence of PTM on protein dynamics, making it easier to interpret PTM functionality at the structure level. The web server is freely available at http://ccbportal.com/PTMdyna.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Lisina/metabolismo , Conformação Proteica
9.
Trends Pharmacol Sci ; 42(7): 551-565, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958239

RESUMO

Protein kinases (PKs) are important drug targets, but kinases selectivity poses a challenge to protein kinase inhibitors (PKIs) design. Fragment-based drug discovery (FBDD) has achieved great success in the discovery of highly specific PKIs. It makes full use of kinase-fragment interaction in target kinase subpockets to obtain promising selectivity. However, it's difficult to understand the complicated kinase-fragment interaction space, and systemic discussion of these interactions is still lacking. Herein, we introduce the advantages of the FBDD strategy in PKIs design. Key features of the selectivity of kinase-fragment interactions are summarized and analyzed. Some promising PKIs are introduced as case studies to help understand the fragment-to-lead (F2L) optimization process. Novel strategies and technologies for FBDD in PKIs discovery are also outlooked.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases , Descoberta de Drogas , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA